Short-term adaptation and temporal processing in the cryophilic response of Caenorhabditis elegans.
نویسندگان
چکیده
When navigating spatial thermal gradients, the nematode C. elegans migrates toward colder temperatures until it reaches its previous cultivation temperature, exhibiting cryophilic movement. The strategy for effecting cryophilic movement is the biased random walk: C. elegans extends (shortens) periods of forward movement that are directed down (up) spatial thermal gradients by modulating the probability of reorientation. Here, we analyze the temporal sensory processor that enables cryophilic movement by quantifying the movements of individual worms subjected to defined temperature waveforms. We show that step increases in temperature as small as 0.05 degrees C lead to transient increases in the probability of reorientation followed by gradual adaptation to the baseline level; temperature downsteps leads to similar but inverted responses. Short-term adaptation is a general property of sensory systems, allowing organisms to maintain sensitivity to sensory variations over broad operating ranges. During cryophilic movement C. elegans also uses the temporal dynamics of its adaptive response to compute the time derivative of gradual temperature variations with exquisite sensitivity. On the basis of the time derivative, the worm determines how it is oriented in spatial thermal gradients during each period of forward movement. We show that the operating range of the cryophilic response extends to lower temperatures in ttx-3 mutants, which affects the development of the AIY interneurons. We show that the temporal sensory processor for the cryophilic response is affected by mutation in the EAT-4 glutamate vesicular transporter. Regulating the operating range of the cryophilic response and executing the cryophilic response may have separate neural mechanisms.
منابع مشابه
Role of adaptation in C. elegans thermotaxis. Focus on "Short-term adaptation and temporal processing in the cryophilic response of Caenorabditis elegans".
From honeybee foraging to bird migration, the orientation of animals in their environments is vital for survival and provides opportunities for studying the neural mechanisms that underlie the perception and processing of sensory information. Temperature is a ubiquitous environmental variable that affects both the rate and the nature of the chemical reactions in and around a cell. Animals have ...
متن کاملC. elegans positive olfactory associative memory is a molecularly conserved behavioral paradigm
While it is thought that short-term memory arises from changes in protein dynamics that increase the strength of synaptic signaling, many of the underlying fundamental molecular mechanisms remain unknown.Our lab developed a Caenorhabditis elegans assay of positive olfactory short-term associative memory (STAM), in which worms learn to associate food with an odor and can remember this associatio...
متن کاملStep response analysis of thermotaxis in Caenorhabditis elegans.
The nematode Caenorhabditis elegans migrates toward a preferred temperature on a thermal gradient. A candidate neural network for thermotaxis in C. elegans has been identified, but the behavioral strategy implemented by this network is poorly understood. In this study, we tested whether thermal migration is achieved by modulating the probability of turning behavior, as in C. elegans chemotaxis....
متن کاملTemperature and food mediate long-term thermotactic behavioral plasticity by association-independent mechanisms in C. elegans.
Thermotactic behavior in the nematode Caenorhabditis elegans exhibits long-term plasticity. On a spatial thermal gradient, C. elegans tracks isotherms near a remembered set-point (T(S)) corresponding to its previous cultivation temperature. When navigating at temperatures above its set-point (T>T(S)), C. elegans crawls down spatial thermal gradients towards the T(S) in what is called cryophilic...
متن کاملDetermination of the effects of food preservatives benzoic acid and sodium nitrate on lifespan, fertility and physical growth in Caenorhabditis elegans
Presently, the use of protective food additives such as benzoic acid and sodium nitrate is quite common. However, it was found that these additives, which initially appeared to be harmless, led to the emergence of a number of health problems. Cancer and diseases and deaths with no apparent causes are among the leading concerns. Therefore, the studies which can reveal the genotoxic potential of ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of neurophysiology
دوره 97 3 شماره
صفحات -
تاریخ انتشار 2007